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Background & Motivation

Computer Vision
- “Enables computers and systems to derive meaningful information from digital 

images”         – From IBM Topics
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Background & Motivation

Computer Vision
- “Enables computers and systems to derive meaningful information from digital 

images”         – From IBM Topics
- Applications we have already seen:
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Background & Motivation

What if we can actively determine where we want to look next?
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Background & Motivation

What if we can actively determine where we want to look next?

But… what does it really mean?
What is the problem we are trying to solve here?
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Problem Formulation

The paper does not provide a generalized problem definition
 
Example: 3D object understanding task

- 3D Object
- M*N discrete observation locations

- Camera
- Action:  5 elevations × 5 azimuths

- Number of Observations
- T = 4

- Goal
- Shape reconstruction
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Problem Formulation

The paper does not provide a generalized problem definition
 
Example: 3D object understanding task

- 3D Object (Environment):
- M*N discrete observation locations

- Camera (Active Agent):
- Action:  5 elevations × 5 azimuths

- Number of Observations (Time): 
- T = 4

- Goal (Exploration Objective):
- Shape reconstruction
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Prior Work & limitations
● Saliency and attention: find most salient regions of already captured image/video data; predict the 

gaze of human observer. Access to observation of the entire environment → to look for a new 
observation.

● Optimal sensor placement: how to place sensors so that they provide maximum coverage. 
Sensors are static → Active completion, reacting to past observations.

● Active perception: active object localization, action detection in video, object recognition. 
Pre-defined recognition tasks → general data acquisition strategy in perception; manually labeled 
data → unlabeled observations.

● Active visual localization and mapping: to limit samples needed to densely reconstruct a 3D 
environment geometrically. Purely geometric methods require dense observations → infer missing 
content with semantic and contextual clues.

● Learning to reconstruct: one-short reconstruction. Single view → sequence of views; image 
feature learning → learn action policies.
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Prior Work: active object recognition

Look-ahead before you leap: end-to-end active recognition by forecasting 
the effect of motion, ECCV (2016)

- “Supervised”: need object label
- “Unsupervised”: we are trying to reconstruct the object, no need for label
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Preliminary: RNN (LSTM)
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Preliminary: Reinforcement Learning (REINFORCE)
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Full Pipeline
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Loss function

● Specifically,
     backpropagated via the DECODE, AGGREGATE, FUSE, SENSE modules

● ACT is stochastic as it involves sampling → use REINFORCE to handle this:
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Loss function

● Specifically,
     backpropagated via the DECODE, AGGREGATE, FUSE, SENSE modules

● ACT is stochastic as it involves sampling → use REINFORCE to handle this:

○ Is this actually the reason?
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Tricks

- In practice, it is beneficial to penalize errors in the predicted viewgrid at every 
timestep rather than just at t = T:

- Pretrain the entire network with T = 1
- Essentially, no action involved
- We will talk more about this later
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Experimental Setup: Active observation completion

Harel, Jonathan, Christof Koch, and Pietro Perona. 
"Graph-based visual saliency." Advances in neural 
information processing systems 19 (2006).
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Result: Active observation completion

● Improvements larger on more difficult datasets (SUN360 > unseen ModelNet 
> seen ModelNet)

[23] Harel, Jonathan, Christof Koch, and Pietro Perona. 
"Graph-based visual saliency." Advances in neural 
information processing systems 19 (2006).
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Result: Active observation completion

● Improvements larger on more difficult datasets (SUN360 > unseen ModelNet 
> seen ModelNet)

● These baselines are all relatively weak
[23] Harel, Jonathan, Christof Koch, and Pietro Perona. 
"Graph-based visual saliency." Advances in neural 
information processing systems 19 (2006).
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Result: Active observation completion
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Result Visualization: Active observation completion
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Policy Transfer

Objective: to inject the generic look-around policy into unseen tasks in unseen
environments.
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Result: Policy Transfer

ours outperforms 1-view and random-policy, on par with sup-policy
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Limitations & Critiques
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Limitations & Critiques

- Unclear why co-training the policy and the reconstruction network
- Essentially 2 agents cooperating with each other

- Consider: the policy learns to stay fixed; the reconstruction network learns to reconstruct 
only using the first observation

- This is a Nash equilibrium!
- Policy training relies on a good reconstruction network (trick 2)
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Tricks

- In practice, it is beneficial to penalize errors in the predicted viewgrid at every 
timestep rather than just at t = T:

- Pretrain the entire network with T = 1
- Essentially, no action involved
- This is essentially making sure that at the start of the training the reconstruction network 

is already reasonable
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Limitations & Critiques

- Unclear why co-training the policy and the reconstruction network
- Essentially 2 agents cooperating with each other

- Consider: the policy learns to stay fixed; the reconstruction network learns to reconstruct 
only using the first observation

- This is a Nash equilibrium!
- Policy training relies on a good reconstruction network (trick 2)

- How well can the policy generalize?
- What if the actor need to complete certain physical tasks while observing?

- e.g.: mobile manipulator
- What about if the total time T changes?
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Result Visualization (limitations)

What if T changes?
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Things to be improved…

- “ Exploration episodes are shown at https://goo.gl/BgWX3W”

- No code
- Not enough visual proof & no theoretical proof

https://goo.gl/BgWX3W
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Future works

Train faster and converge to better policies?
- Sidekick policy learning [Ramakrishnan et al. 2018]

Geometry awareness (cross-object occlusion)?
- Geometry-aware RNN [Cheng et al. 2018]
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Extended Readings
● Yang, J., Ren, Z., Xu, M., Chen, X., Crandall, D., Parikh, D., & Batra, D. (2019). Embodied amodal recognition: 

Learning to move to perceive objects. Proceedings of the IEEE International Conference on Computer Vision, 
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Summary

● Problem: How can a visual agent autonomously capture good observations?
● Why important? Crucial step towards embodied, active agents in novel 

environments
● Key limitations: limited generalizability, weak theoretical analysis
● Advantages: transferability, “unsupervised” training
● Key insights: the agent is rewarded for actions that reduce its uncertainty 

about the unobserved portions of the environment
● What did they demonstrate by this insight?

○ SOTA performance on active observation completion tasks
○ First to accomplish “policy transfer” between tasks
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Thank you!


